Улучшения YOLOv8: введение CVPR 2023 BiFormer, построение эффективной пирамидальной сетевой архитектуры, основанной на динамическом разреженном внимании, с очевидными преимуществами для небольших целей.
Улучшения YOLOv8: введение CVPR 2023 BiFormer, построение эффективной пирамидальной сетевой архитектуры, основанной на динамическом разреженном внимании, с очевидными преимуществами для небольших целей.

1.Введение в BiFormer

бумага:https://arxiv.org/pdf/2303.08810.pdf

Справочная информация: Механизм внимания является одним из основных строительных блоков Vision Transformer и может фиксировать долгосрочные зависимости. Однако эта мощная функция сопряжена с огромными вычислительными нагрузками и затратами памяти из-за необходимости вычислять попарные взаимодействия токенов между всеми пространственными местоположениями. Чтобы облегчить эту проблему, в ряде работ предпринимаются попытки решить эту проблему путем введения во внимание созданной вручную и независимой от содержания разреженности, например, ограничение операций внимания локальными окнами, осевыми полосами или расширенными окнами.

Метод этой статьи: В этой статье предлагается двухуровневый метод маршрутизации с динамическим разреженным вниманием. Для запроса нерелевантные пары ключ-значение сначала отфильтровываются на грубом уровне региона, а затем применяется детальное внимание от токена к токену к объединению оставшихся регионов-кандидатов (т. е. регионов маршрутизации). Предлагаемая двухуровневая маршрутизация имеет простую, но эффективную реализацию, использует разреженность для экономии вычислений и памяти и включает только умножение плотных матриц, дружественное к графическому процессору. На этой основе был построен новый универсальный Vision Transformer под названием BiFormer.

Среди них рисунок (a) представляет собой оригинальную реализацию внимания, которая работает непосредственно в глобальном масштабе, что приводит к высокой вычислительной сложности и большому использованию памяти, тогда как на рисунках (b)–(d) эти методы реализованы путем введения различных руководств; Режимы разреженного внимания используются для уменьшения сложности, например локальных окон, осевых полос и расширенных окон, тогда как рисунок (e) основан на деформируемом внимании с помощью нерегулярных сеток для достижения адаптивной разреженности изображения. ручной работы и Ничего общего с контентом Разреженность введена в механизм внимания, чтобы попытаться облегчить эту проблему. поэтому,Эта статья написана с помощью двойногослоймаршрутизация(bi-level routing)предложил романиздинамическое скудное внимание(dynamic sparse attention ),для достижения большей гибкостиизРассчитать распределениеиосведомленность о содержании,Сделайте его динамичным и разреженным с учетом запросов.,Как показано на рисунке (f).

на основеBRAмодуль,В этой статье строится романиз Универсальный преобразователь изображенийBiFormer。Как показано на картинке выше,который следует за большинствомизvision transformerАрхитектурный дизайн,Он также принимает четырехуровневую пирамидальную структуру.,Это понижение дискретизации в 32 раза.

Конкретно,BiFormerИспользуйте встраивание перекрывающихся блоков на первом этапе.,Используйте модули объединения блоков на втором-четвертом этапах, чтобы уменьшить входное пространственное разрешение.,Увеличение количества каналов одновременно,Затем используйте непрерывныйизBiFormerпреобразование объекта блока。нужно вниманиеизда,в каждом блокеиз开始均да使用 из Глубокие свертки для неявного кодирования информации об относительном положении.。Затем применитеBRAмодульи扩展率为 из 2 слой 多слойперсептрон(Multi-Layer Perceptron, MLP)модуль,Используется отдельно для моделирования взаимосвязей перекрестных позиций и встраивания каждой позиции.

Этот метод имеет лучший эффект обнаружения небольших целей.。可能да因为BRAмодульдана основе稀疏采样而不да下采样,Во-первых, можно сохранить подробную подробную информацию.,Во-вторых, сумму расчета также можно сохранить.

2. Реализация BiFormer на базе Yolov8

2.1 C2f_BiLevelRoutingAttention、BiFormerприсоединитьсяmodules.pyсередина

Основной код:

Язык кода:javascript
копировать
class BiLevelRoutingAttention(nn.Module):
    """
    n_win: number of windows in one side (so the actual number of windows is n_win*n_win)
    kv_per_win: for kv_downsample_mode='ada_xxxpool' only, number of key/values per window. Similar to n_win, the actual number is kv_per_win*kv_per_win.
    topk: topk for window filtering
    param_attention: 'qkvo'-linear for q,k,v and o, 'none': param free attention
    param_routing: extra linear for routing
    diff_routing: wether to set routing differentiable
    soft_routing: wether to multiply soft routing weights
    """

    def __init__(self, dim, num_heads=8, n_win=7, qk_dim=None, qk_scale=None,
                 kv_per_win=4, kv_downsample_ratio=4, kv_downsample_kernel='ada_avgpool', kv_downsample_mode='identity',
                 topk=4, param_attention="qkv", param_routing=False, diff_routing=False, soft_routing=False,
                 side_dwconv=5,
                 auto_pad=True):
        super().__init__()
        # local attention setting
        self.dim = dim
        self.n_win = n_win  # Wh, Ww
        self.num_heads = num_heads
        self.qk_dim = qk_dim or dim

        assert self.qk_dim % num_heads == 0 and self.dim % num_heads == 0, 'qk_dim and dim must be divisible by num_heads!'

        self.scale = qk_scale or self.qk_dim ** -0.5

        ################side_dwconv (i.e. LCE in ShuntedTransformer)###########
        self.lepe = nn.Conv2d(dim, dim, kernel_size=side_dwconv, stride=1, padding=side_dwconv // 2,
                              groups=dim) if side_dwconv > 0 else \
            lambda x: torch.zeros_like(x)

        ################ global routing setting #################
        self.topk = topk
        self.param_routing = param_routing
        self.diff_routing = diff_routing
        self.soft_routing = soft_routing
        # router
        assert not (self.param_routing and not self.diff_routing)  # cannot be with_param=True and diff_routing=False
        self.router = TopkRouting(qk_dim=self.qk_dim,
                                  qk_scale=self.scale,
                                  topk=self.topk,
                                  diff_routing=self.diff_routing,
                                  param_routing=self.param_routing)
        if self.soft_routing:  # soft routing, always diffrentiable (if no detach)
            mul_weight = 'soft'
        elif self.diff_routing:  # hard differentiable routing
            mul_weight = 'hard'
        else:  # hard non-differentiable routing
            mul_weight = 'none'
        self.kv_gather = KVGather(mul_weight=mul_weight)

        # qkv mapping (shared by both global routing and local attention)
        self.param_attention = param_attention
        if self.param_attention == 'qkvo':
            self.qkv = QKVLinear(self.dim, self.qk_dim)
            self.wo = nn.Linear(dim, dim)
        elif self.param_attention == 'qkv':
            self.qkv = QKVLinear(self.dim, self.qk_dim)
            self.wo = nn.Identity()
        else:
            raise ValueError(f'param_attention mode {self.param_attention} is not surpported!')

        self.kv_downsample_mode = kv_downsample_mode
        self.kv_per_win = kv_per_win
        self.kv_downsample_ratio = kv_downsample_ratio
        self.kv_downsample_kenel = kv_downsample_kernel
        if self.kv_downsample_mode == 'ada_avgpool':
            assert self.kv_per_win is not None
            self.kv_down = nn.AdaptiveAvgPool2d(self.kv_per_win)
        elif self.kv_downsample_mode == 'ada_maxpool':
            assert self.kv_per_win is not None
            self.kv_down = nn.AdaptiveMaxPool2d(self.kv_per_win)
        elif self.kv_downsample_mode == 'maxpool':
            assert self.kv_downsample_ratio is not None
            self.kv_down = nn.MaxPool2d(self.kv_downsample_ratio) if self.kv_downsample_ratio > 1 else nn.Identity()
        elif self.kv_downsample_mode == 'avgpool':
            assert self.kv_downsample_ratio is not None
            self.kv_down = nn.AvgPool2d(self.kv_downsample_ratio) if self.kv_downsample_ratio > 1 else nn.Identity()
        elif self.kv_downsample_mode == 'identity':  # no kv downsampling
            self.kv_down = nn.Identity()
        elif self.kv_downsample_mode == 'fracpool':
            # assert self.kv_downsample_ratio is not None
            # assert self.kv_downsample_kenel is not None
            # TODO: fracpool
            # 1. kernel size should be input size dependent
            # 2. there is a random factor, need to avoid independent sampling for k and v
            raise NotImplementedError('fracpool policy is not implemented yet!')
        elif kv_downsample_mode == 'conv':
            # TODO: need to consider the case where k != v so that need two downsample modules
            raise NotImplementedError('conv policy is not implemented yet!')
        else:
            raise ValueError(f'kv_down_sample_mode {self.kv_downsaple_mode} is not surpported!')

        # softmax for local attention
        self.attn_act = nn.Softmax(dim=-1)

        self.auto_pad = auto_pad

    def forward(self, x, ret_attn_mask=False):
        """
        x: NHWC tensor

        Return:
            NHWC tensor
        """
        # NOTE: use padding for semantic segmentation
        ###################################################

        if self.auto_pad:
            N, H_in, W_in, C = x.size()



            pad_l = pad_t = 0
            pad_r = (self.n_win - W_in % self.n_win) % self.n_win
            pad_b = (self.n_win - H_in % self.n_win) % self.n_win

            x = F.pad(x, (0, 0,  # dim=-1
                          pad_l, pad_r,  # dim=-2
                          pad_t, pad_b))  # dim=-3
            _, H, W, _ = x.size()  # padded size
        else:
            N, H, W, C = x.size()
            #print(N)
           # print(H)
           # print(W)
           # print(self.n_win)
            assert H % self.n_win == 0 and W % self.n_win == 0  #
        ###################################################

        # patchify, (n, p^2, w, w, c), keep 2d window as we need 2d pooling to reduce kv size
        x = rearrange(x, "n (j h) (i w) c -> n (j i) h w c", j=self.n_win, i=self.n_win)

        #################qkv projection###################
        # q: (n, p^2, w, w, c_qk)
        # kv: (n, p^2, w, w, c_qk+c_v)
        # NOTE: separte kv if there were memory leak issue caused by gather
        q, kv = self.qkv(x)

        # pixel-wise qkv
        # q_pix: (n, p^2, w^2, c_qk)
        # kv_pix: (n, p^2, h_kv*w_kv, c_qk+c_v)
        q_pix = rearrange(q, 'n p2 h w c -> n p2 (h w) c')
        kv_pix = self.kv_down(rearrange(kv, 'n p2 h w c -> (n p2) c h w'))
        kv_pix = rearrange(kv_pix, '(n j i) c h w -> n (j i) (h w) c', j=self.n_win, i=self.n_win)

        q_win, k_win = q.mean([2, 3]), kv[..., 0:self.qk_dim].mean(
            [2, 3])  # window-wise qk, (n, p^2, c_qk), (n, p^2, c_qk)

        ##################side_dwconv(lepe)##################
        # NOTE: call contiguous to avoid gradient warning when using ddp
        lepe = self.lepe(rearrange(kv[..., self.qk_dim:], 'n (j i) h w c -> n c (j h) (i w)', j=self.n_win,
                                   i=self.n_win).contiguous())
        lepe = rearrange(lepe, 'n c (j h) (i w) -> n (j h) (i w) c', j=self.n_win, i=self.n_win)

        ############ gather q dependent k/v #################

        r_weight, r_idx = self.router(q_win, k_win)  # both are (n, p^2, topk) tensors

        kv_pix_sel = self.kv_gather(r_idx=r_idx, r_weight=r_weight, kv=kv_pix)  # (n, p^2, topk, h_kv*w_kv, c_qk+c_v)
        k_pix_sel, v_pix_sel = kv_pix_sel.split([self.qk_dim, self.dim], dim=-1)
        # kv_pix_sel: (n, p^2, topk, h_kv*w_kv, c_qk)
        # v_pix_sel: (n, p^2, topk, h_kv*w_kv, c_v)

        ######### do attention as normal ####################
        k_pix_sel = rearrange(k_pix_sel, 'n p2 k w2 (m c) -> (n p2) m c (k w2)',
                              m=self.num_heads)  # flatten to BMLC, (n*p^2, m, topk*h_kv*w_kv, c_kq//m) transpose here?
        v_pix_sel = rearrange(v_pix_sel, 'n p2 k w2 (m c) -> (n p2) m (k w2) c',
                              m=self.num_heads)  # flatten to BMLC, (n*p^2, m, topk*h_kv*w_kv, c_v//m)
        q_pix = rearrange(q_pix, 'n p2 w2 (m c) -> (n p2) m w2 c',
                          m=self.num_heads)  # to BMLC tensor (n*p^2, m, w^2, c_qk//m)

        # param-free multihead attention
        attn_weight = (
                                  q_pix * self.scale) @ k_pix_sel  # (n*p^2, m, w^2, c) @ (n*p^2, m, c, topk*h_kv*w_kv) -> (n*p^2, m, w^2, topk*h_kv*w_kv)
        attn_weight = self.attn_act(attn_weight)
        out = attn_weight @ v_pix_sel  # (n*p^2, m, w^2, topk*h_kv*w_kv) @ (n*p^2, m, topk*h_kv*w_kv, c) -> (n*p^2, m, w^2, c)
        out = rearrange(out, '(n j i) m (h w) c -> n (j h) (i w) (m c)', j=self.n_win, i=self.n_win,
                        h=H // self.n_win, w=W // self.n_win)

        out = out + lepe
        # output linear
        out = self.wo(out)


        # NOTE: use padding for semantic segmentation
        # crop padded region
        if self.auto_pad and (pad_r > 0 or pad_b > 0):
            out = out[:, :H_in, :W_in, :].contiguous()

        if ret_attn_mask:
            return out, r_weight, r_idx, attn_weight
        else:
            return out

Подробности исходного кода см.: https://cv2023.blog.csdn.net/article/details/130260561.

Специальный тренировочный лагерь Tencent Technology Creation 2023, Второй выпуск Конкурс эссе, получивший приз, чтобы разделить призовой фонд в 10 000 юаней и часы с клавиатурой

boy illustration
Неразрушающее увеличение изображений одним щелчком мыши, чтобы сделать их более четкими артефактами искусственного интеллекта, включая руководства по установке и использованию.
boy illustration
Копикодер: этот инструмент отлично работает с Cursor, Bolt и V0! Предоставьте более качественные подсказки для разработки интерфейса (создание навигационного веб-сайта с использованием искусственного интеллекта).
boy illustration
Новый бесплатный RooCline превосходит Cline v3.1? ! Быстрее, умнее и лучше вилка Cline! (Независимое программирование AI, порог 0)
boy illustration
Разработав более 10 проектов с помощью Cursor, я собрал 10 примеров и 60 подсказок.
boy illustration
Я потратил 72 часа на изучение курсорных агентов, и вот неоспоримые факты, которыми я должен поделиться!
boy illustration
Идеальная интеграция Cursor и DeepSeek API
boy illustration
DeepSeek V3 снижает затраты на обучение больших моделей
boy illustration
Артефакт, увеличивающий количество очков: на основе улучшения характеристик препятствия малым целям Yolov8 (SEAM, MultiSEAM).
boy illustration
DeepSeek V3 раскручивался уже три дня. Сегодня я попробовал самопровозглашенную модель «ChatGPT».
boy illustration
Open Devin — инженер-программист искусственного интеллекта с открытым исходным кодом, который меньше программирует и больше создает.
boy illustration
Эксклюзивное оригинальное улучшение YOLOv8: собственная разработка SPPF | SPPF сочетается с воспринимаемой большой сверткой ядра UniRepLK, а свертка с большим ядром + без расширения улучшает восприимчивое поле
boy illustration
Популярное и подробное объяснение DeepSeek-V3: от его появления до преимуществ и сравнения с GPT-4o.
boy illustration
9 основных словесных инструкций по доработке академических работ с помощью ChatGPT, эффективных и практичных, которые стоит собрать
boy illustration
Вызовите deepseek в vscode для реализации программирования с помощью искусственного интеллекта.
boy illustration
Познакомьтесь с принципами сверточных нейронных сетей (CNN) в одной статье (суперподробно)
boy illustration
50,3 тыс. звезд! Immich: автономное решение для резервного копирования фотографий и видео, которое экономит деньги и избавляет от беспокойства.
boy illustration
Cloud Native|Практика: установка Dashbaord для K8s, графика неплохая
boy illustration
Краткий обзор статьи — использование синтетических данных при обучении больших моделей и оптимизации производительности
boy illustration
MiniPerplx: новая поисковая система искусственного интеллекта с открытым исходным кодом, спонсируемая xAI и Vercel.
boy illustration
Конструкция сервиса Synology Drive сочетает проникновение в интрасеть и синхронизацию папок заметок Obsidian в облаке.
boy illustration
Центр конфигурации————Накос
boy illustration
Начинаем с нуля при разработке в облаке Copilot: начать разработку с минимальным использованием кода стало проще
boy illustration
[Серия Docker] Docker создает мультиплатформенные образы: практика архитектуры Arm64
boy illustration
Обновление новых возможностей coze | Я использовал coze для создания апплета помощника по исправлению домашних заданий по математике
boy illustration
Советы по развертыванию Nginx: практическое создание статических веб-сайтов на облачных серверах
boy illustration
Feiniu fnos использует Docker для развертывания личного блокнота Notepad
boy illustration
Сверточная нейронная сеть VGG реализует классификацию изображений Cifar10 — практический опыт Pytorch
boy illustration
Начало работы с EdgeonePages — новым недорогим решением для хостинга веб-сайтов
boy illustration
[Зона легкого облачного игрового сервера] Управление игровыми архивами
boy illustration
Развертывание SpringCloud-проекта на базе Docker и Docker-Compose